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ABSTRACT

A new instrument, the liquid crystal point diffraction interferometer (LCPDI), has been developed for the

measurement of phase objects. This instrument maintains the compact, robust design of Linnik's point

diffraction interferometer (PDI) and adds to it phase stepping capability for quantitative intefferogram

analysis. The result is a compact, simple to align, environmentally insensitive interferometer capable of

accurately measuring optical wavefi'onts with high data density and with automated data reduction.

The design of the LCPDI is briefly discussed. An algorithm is presented for eliminating phase measurement

error caused by object beam intensity variation fi'om frame-to-flame. The LCPDI is demonstrated by

measuring the temperature distribution across a heated chamber filled with silicone oil. The measured

results are compared to independently measured results and show excellent agreement with them.

It is expected that this instrument will have application in the fluid sciences as a diagnostic tool, particularly

in space based applications where autonomy, robustness, and compactness are desirable qualifies. R should

also be useful for the testing of optical elements, provided a master is available for comparison.

Keywords: common-path interferometer, error reduction, phase measurement algorithm, wavefront

measurement, temperature measurement

1. INTRODUCTION

A new instrument, the liquid crystal point diffraction interferometer (LCPDI) has recently been described.

The LCPDI is based on the point diffraction interferometer. 2,3 It is made from a thin liquid crystal layer

sandwiched between glass plates, with an embedded microsphere serving as the diffracting element (Figure

1). Light is reflected offor transmitted through an object of interest, and then focused onto the

microsphere. The microsphere diameter is smaller than the focused spot, and so a spherical wave is

generated by diffraction. The portion of the incident light unaffected by the pinhole is transmitted through

the liquid crystal layer. Information contained in the incident wave is retained in this beam but filtered out of

the diffracted wave. The two components of the transmitted wave are therefore referred to as the object and

reference waves, respectively. They both travel coincidentally behind the LCPDI filter, and combine

coherently to produce an interferogram. The object beam is attenuated by dye added to the liquid crystal

layer to improve fringe contrast.

Like the point diffraction interferometer, the LCPDI has a common-path design, forming an interferogram

using only a single laser beam rather than the two beams required for Mach-Zender or Michelson



interferometers. This is especially important when measuring large objects like wind tunnel flows where the

optical paths are very long and air turbulence must be minimized along the paths. A single beam is also

advantageous when the size of the instalment must be kept small. The common-path design also requires

relatively few optical elements, reducing the cost, size, and weight of the instnJment, and simplifying

alignment.
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Figure 1.--Schematic of the LCPDI showing the liquid crystal layer (LC),
glass plates (G), microsphere (M), spacing rods (R), electrodes (E), leads
(L). The object wave is shown as a solid line, and the reference wave is
shown as a dashed line.

Unlike the point diffraction interferometer, though, the LCPDI permits the use of phase shifting

interferometry 4 to extract high data density, quantitative, wavefi'ont information from the interferogram.

The object beam is phase shifted by modulating amplitude of an electric field applied across the liquid

crystals, altering the refractive index of the birefringent nematic liquid crystals. 5 This allows completely

flexible phase stepping interferometry capability while retaining the fully common-path optical design.

For a 9 micron thick layer of Merck E-7 liquid crystals at 20 °C, a sequence of voltages ranging from 1.05

to 1.55 VAC changes the phase of an incident 514.5 nm beam by five consecutive rJ2 radian steps. This

permits the use ofthe standard 5-frame phase extraction algorithm, useful for reducing phase measurement

error in the presence of phase stepping error. 6 This algorithm is appropriate for the LCPDI, because the

LCPDI phase shifts a converging beam, producing a non-uniform phase shift across the image.

This sequence of applied voltages modulates the amplitude as well as the phase of the object beam because

the dichroic dye molecules rotate with the liquid crystals. 7 All of the standard phase extraction algorithms

assume that both the object and reference beam amplitudes remain constant from frame-to-frame, and

introduce substantial phase measurement error if this condition is not met. The next section describes both a

modified 5-frame algorithm that eliminates this error provided the object beam intensity variation is exactly

known, and an algorithm that reduces the error with fewer computational steps. Finally, experimental data is



presentedthat shows good agreement between a temperature distribution measured with the LCPDI and

with a traversing thermocouple.

2. _RITHM MODIFICATION

Each recorded interferogram produced by the LCPDI can be expressed by the standard interference

equation:

wherej = 0,1,2,3,4, zl_ is the relative phase difference between the object and reference beams,

I°bj and Kefrefer to the intensity of the object and reference beams, respectively, and (x,y) denotes each

pixel in the image, 2 is the wavelength of the incident fight, and Wis the object beam wavefi'ont. If the

object and reference beam intensities do not change from frame-to-frame, that is,

l_ (x,y) = l"C (x,y) (2)

,_(x,y) = ,_(x,y) (3)
then the set of simultaneous equations represented by the interferograms can be solved to determine the

wavefront W. One solution is the standard 5-fi'ame phase extraction algorithm mentioned in the previous
section:

2(I3-I_) (4)
t_(o)=(_.o+:__2:_)

where Af_j =fir�2, and 0 = 2a'W/2, and the explicit pixel dependence has been dropped for clarity. If,
however, equation (3) is not satisfied and the object beam intensity varies from frame-to-flame, as in the

case of the LCPDI, then Equation (4) must be modified to produce an exact solution.

--:
J (s)

where zl/j --/j -/_/_'J. This equation is exact, provided that the reference beam intensity remains constant

from frathe tdfraine and that the object beam intensity distribution is known for each frame.

Since Equation (5) is requires significantly more computational steps than Equation(4), the following

approximation can be used instead:

2(_,/i,_- _,/_,_)
t_(o)=(Zo/_o_ +_/_- 2_,_/.,#) (6)

This equation is not exact, and works best if ifbj >>/fef so that/fbj + _f-- i/oh L



A simulated sequence of five interferograms generated from an arbitrary wavefront is shown in Figure 2.

The reference beam intensity distribution is constant across each flame and does not vary from frame to

frame. The object beam intensity is also uniformly dism_mted across each frame, but differs from frame to

frame. The reference beam intensity was set to 5, and the object beam intensifies were set to 20, 32, 36, 48,

and 68. This sequence simulated interferograms with significant intensity modulation with poor fringe

contrast. Wavefronts were computed from these five interferograms using the standard 5-frame algorithm

[Equation (4)], the approximate compensation algorithm [Equation (6)], and the exact compensation

algorithm [Equation (5)]. The differences between these computed wavefronts and the synthetic wavefront

used to make the interferograms are the measured errors; these are shown in Figures 3(a), 3(b), and 3(c) for

Equations (4), (6), and (5), respectively. Significant periodic error is present when the 5-frame algorithm is

used. This error is approximately halved when the approximate compensation algorithm is used, and

completely eliminated when the exact compensation algorithm is used. The standard deviations of the

computed wavefront from the synthetic wavefront for the three cases are 9.9, 1.7, and 0.0 degrees.

Figure 2.--Sequence of five simulated interferograms. I jref (x,y) = 5; Ij °bj (x,y) = 68 [0.29, 0.47, 0.53, 0.70, 1.00].

3. EXPERIMENTAL RESULTS

The LCPDI was used to measure the temperature distribution across an oR-filled chamber. The rectangular

chamber was constructed of four Lexan double walls with 30 millimeter diameter windows. The optical path

length through the oil chamber was 43 ram, and the chamber was 60 mm high. The top and bottom of the

chamber each contained a reciroulating water bath to maintain the top and bottom chamber surfaces at a

specific temperature. Collimated, horizontally polarized light passed through the chamber windows. A 16

millimeter diameter aperture behind the last window truncated the beam, and a 100 millimeter Cooke triplet

lens focused the light, forming an ff6.3 beam. The LCPDI was mounted on a 3-axis positioner with the

relaxed liquid crystal molecules lying horizontally, and was placed just behind the focused spot. The

interferogram was formed on a ground glass screen and imaged onto a CCD detector array.

First, five phase-stepped interferograms were recorded to measure the wavefront passing through the

chamber with the oil at room temperature (isothermal condition). Then the top and bottom chamber plates
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Figure 3.--Difference between synthetic wavefront and wavefronts calculated using (a) standard 5-frame

algorithm, (b) approximate compensation algorithm, and (c) exact compensation algorithm.



were set to the desired temperatures and left there for about an hour to allow the oil to reach equih'brium.
Five more phase-stepped interferograms were then recorded to measure the wavefront passing through the

oil. The wavefront was calculated from each set ofinterferograms using the approximate compensation
algorithm descn'bed in the previous section. In order to use this equation, the object beam intensity
distribution must be obtained for each interferogram. This information can be obtained by translating the

LCPDI filter so that the focused beam doesn_ hit the microsphere,* but in this case the object beam intensity

distribution was obtained by fitting a two-dimensional quadratic surface to the interferogram itself. Because
the object beam intensity was much stronger than the reference beam, this was a reasonable approximation.
The difference between these measured wavefronts was then used to determine the temperature distribution
across the oil.

To verify the LCPDI measurement, the oil temperature distribution was also measured with a thermocouple.

The thermocouple was mounted in a 0.8 miUimeter diameter tube that was inserted through a small port in

the top of the chamber. The tube was mounted on a traversing stage and scanned from the top to the

bottom of the chamber. The temperature distribution across the oil chamber measured with both the LCPDI
and the thermocouple is shown in Figure 4. Very good agreement is shown.
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Figure4.mTemperature measuredacross the oil chamberusingthe LCPDI(soliddots)and a thermocouple
(symbolswith errorbars).
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4. CONCLUSIONS

The effectiveness of the liquid crystal point diffraction interferometer has been demonstrated by accurately

measuring the temperature distribution across an oil chamber. This demonstration shows that the LCPDI

can be used as a common-path, phase-shifting interferometer for applications requiring a compact, robust,

relatively inexpensive, and automated instrument.

A new algorithm has been developed to exactly compensate for object beam intensity changes from frame*

to-frame. This algorithm can be used with any phase shifting interferometer where the object beam varies

and the reference beam is constant.
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